skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Ballard, Megan S"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Wind, wave, and acoustic observations are used to test a scaling for ambient sound levels in the ocean that is based on wind speed and the degree of surface wave development (at a given wind speed). The focus of this study is acoustic frequencies in the range 1-20 kHz, for which sound is generated by the bubbles injected during surface wave breaking. Traditionally, ambient sound spectra in this frequency range are scaled by wind speed alone. In this study, we investigate a secondary dependence on surface wave development. For any given wind-speed, ambient sound levels are separated into conditions in which waves are 1) actively developing or 2) fully developed. Wave development is quantified using the non-dimensional wave height, a metric commonly used to analyze fetch or duration limitations in wave growth. This simple metric is applicable in both coastal and open ocean environments. Use of the wave development metric to scale sound spectra is first motivated with observations from a brief case study near the island of Jan Mayen (Norwegian Sea), then robustly tested with long time-series observations of winds and waves at Ocean Station Papa (North Pacific Ocean). When waves are actively developing, ambient sound levels are elevated 2-3 dB across the 1-20 kHz frequency range. This result is discussed in the context of sound generation during wave breaking and sound attenuation by persistent bubble layers. 
    more » « less
  2. Seagrasses play an important role in coastal ecosystems and serve as important marine carbon stores. Acoustic monitoring techniques exploit the sensitivity of underwater sound to bubbles, which are produced as a byproduct of photosynthesis and present within the seagrass tissue. To make accurate assessments of seagrass biomass and productivity, a model is needed to describe acoustic propagation through the seagrass meadow that includes the effects of gas contained within the seagrass leaves. For this purpose, a new seagrass leaf model is described for Thalassia testudinum that consists of a comparatively rigid epidermis that composes the outer shell of the leaf and comparatively compliant aerenchyma that surrounds the gas channels on the interior of the leaf. With the bulk modulus and density of the seagrass tissue determined by previous work, this study focused on characterizing the shear moduli of the epidermis and aerenchyma. These properties were determined through a combination of dynamic mechanical analysis and acoustic resonator measurements coupled with microscopic imagery and finite element modeling. The shear moduli varied as a function of length along the leaves with values of 100 and 1.8 MPa at the basal end and 900 and 3.7 MPa at the apical end for the epidermis and aerenchyma, respectively. 
    more » « less
  3. null (Ed.)